
INTREPID
Issue 2
July 2024

NOTES

S I M U LA T I O N
ROBOTICS

Intrepid AI

An Introduction to the Most Efficient Computing
Paradigm for Video Games and Simulators

What is an Entity Component System • Why ECS for robotics

simulations • Simulating robotics swarms at maximum speed

Intrepid Notes is published by Intrepid AI BV, Rue
de l’Enseignement 25, 1000 Brussels (Belgium)
Access a digital copy of the magazine at
intrepid.ai/notes

THE POWER OF ENTITY COMPONENT
SYSTEM IN ROBOTICS SIMULATIONS 1

INTREPID

NOTES
INTREPID

NOTES

Intrepid AI

Issue 2
July 2024

NEXT ISSUE: SEPTEMBER 2024
To set up a 30 min initial chat with our editor to talk about contributing a issue or a
part of it, please email notes@intrepid.ai

DISCLAIMER
The magazine and its publisher are not responsible for any issues or damages that may arise from
applying the information without professional guidance.

WHAT IS AN ENTITY COMPONENT SYSTEM

WHY ECS FOR ROBOTICS SIMULATIONS

USE CASE: SIMULATING ROBOTICS SWARMS AT
MAXIMUM SPEED

2

6

3

THE POWER OF ENTITY
COMPONENT SYSTEM IN
ROBOTICS SIMULATIONS

In the evolving landscape of
robotics simulations, the
need for efficient and
scalable software
architecture is paramount.
As the complexity of
simulated environments
grows, together with the
number of agents that are
simulated, traditional object-
oriented programming
paradigms often fall short in
terms of performance and
flexibility.
This is where the Entity
Component System (ECS)
shines, offering a robust and
efficient approach to
managing the intricacies of
dynamic and densely
populated virtual worlds.

At Intrepid AI, we pride
ourselves on our state-of-the-
art simulator, which
leverages, among other
technologies, the ECS
architecture through Bevy, a
promising game engine
entirely written in Rust. In this
issue we delve into the
intricacies of ECS, illustrating

why it is the optimal choice
for simulations with
numerous entities and
dynamic environments.
We will also highlight how our
use of Bevy’s ECS framework
enhances performance and
scalability in our cutting-edge
robotics simulations.

Intrepid AI | Page 1

High level overview of the ECS architecture. Courtesy of Hatledal et al.

Get in touch

The Entity Component System
is a software architectural
pattern widely adopted in
video game development, but
its benefits extend far beyond
gaming. Already considered
by the developers of both
Unity and Unreal Engine, the
ECS paradigm is designed to
handle the representation of
game world objects in a way
that maximizes performance
and flexibility. It decouples
data (components) from
behavior (systems) and
entities, which are essentially
unique identifiers that group
components together.

Entity

This is the simplest part of an
ECS system, an entity is a
unique identifier.
One should think of it as an
index number that represents

What is an Entity
Component
System?

Intrepid AI | Page 2

AI powered all-in-one
platform

for autonomous robotics

INTREPID AI

a game object or, in our
case, a simulation object.

Component

These are data containers.
Components do not contain
any behavior-specific
information. They only hold
data.
For example, a position
component might store
coordinates (x, y, z), while a
velocity component might
store speed and direction.

System

Systems contain the logic
that operates on
components. They iterate
over entities with specific
components and apply the
necessary operations.
For instance, a movement
system might update the
position of entities based
on their velocity
components.

Typical video game development schema to separate data from logic to enable
parallelization. Courtesy of https://dublog.net/blog/rust-2/

https://intrepid.ai/contact

Intrepid AI | Page 3

Why ECS for Robotics
Simulations?

Data-Oriented Design: ECS promotes a data-
oriented design, which optimizes how data is
stored and accessed. Components are
stored in contiguous memory blocks rather
than being scattered across the heap, as in
traditional OOP. This contiguity enhances
data locality.

Cache Utilization: Modern CPUs are
heavily reliant on cache for performance.
When components are stored in
contiguous memory, it reduces cache
misses, improving the speed of data
access. Systems quickly iterate over arrays
of components as data is more likely to be
loaded into the cache.

In simulations, especially those involving robotics, we
often deal with numerous entities that require frequent
and complex interactions, not to mention modeling
physics equations with much more accuracy and numeric
stability than the typical video game. Traditional object-
oriented approaches can become cumbersome and
inefficient as the number of entities grows. ECS offers
several advantages that make it a superior choice for
such scenarios.

Technical Superiority of ECS in
Robotics Simulations

OOP: Objects in OOP often have pointers to other
objects, leading to non-contiguous memory
access patterns. This can result in cache misses
and slower data retrieval.

ECS: By storing similar components together, ECS
ensures that systems can access and process data
in a cache-friendly manner, leading to significant
performance gains.

In the context of robotics simulations, the Entity
Component System (ECS) offers distinct technical
advantages over traditional object-oriented programming
(OOP) approaches. These advantages stem from ECS's
ability to optimize data locality, parallelism, and
modularity. Here, we delve deeper into the technical
reasons why ECS is faster and more efficient.

 Data Locality and Cache Efficiency1.

Technical Comparison &
Highlights

// OOP Example (simplified)
class Robot {
public:
 Position position;
 Velocity velocity;
 Health health;
 // Other attributes and methods
};

// ECS Example (simplified)
struct Position {
 float x, y, z;
};

struct Velocity {
 float dx, dy, dz;
};

struct Health {
 int hp;
};

// Arrays of components
Position positions[NUM_ENTITIES];
Velocity velocities[NUM_ENTITIES];
Health healths[NUM_ENTITIES];

In OOP, consider a game where each entity, like a player or enemy, is
an object with pointers to various components such as position,
velocity, and health. Accessing these components involves jumping
around different memory locations, leading to cache misses and
inefficient data retrieval.
On the other hand, an Entity Component System (ECS) approach
would store all positions in one contiguous array, all velocities in
another, and so forth. For instance, updating all positions in the game
can be done by iterating through a single array, maximizing cache hits
and significantly boosting performance.
This cache-friendly data layout is a core advantage of ECS over
traditional OOP in scenarios requiring rapid data processing.

Intrepid AI | Page 4

2. Parallelism and Multithreading

OOP: In traditional OOP, methods and data are often
tightly coupled, making it harder to decouple logic for
parallel execution. Synchronization between objects
can lead to bottlenecks.

ECS: Systems in ECS operate on separate data,
making it easier to run them in parallel without data
races. Rust’s ownership model and borrowing rules
ensure safe concurrent access to data.

Independent Systems: In ECS, systems are
designed to operate independently on
specific sets of components. This
independence allows for parallel execution
of systems, leveraging multicore
processors effectively.

// Bevy ECS Example
fn movement_system(mut query:
Query<(&mut Position,
&Velocity)>) {
 for (mut position, velocity) in
query.iter_mut() {
 position.x += velocity.dx;
 position.y += velocity.dy;
 position.z += velocity.dz;
 }
}

fn health_system(mut query:
Query<&mut Health>) {
 for mut health in
query.iter_mut() {
 health.hp -= 1; // Example
health decrement
 }
}

// Both systems can run in
parallel if there are no
dependencies

Task Scheduling: ECS frameworks take
advantage of sophisticated schedulers that
manage dependencies between systems
and maximize parallel execution, further
enhancing performance.

In traditional Object-Oriented Programming (OOP), imagine a simulation

where multiple objects, such as cars in a traffic system, need to update their

states concurrently. Each car object has methods that interact with its own

data, necessitating careful synchronization to avoid conflicts, which can

introduce bottlenecks and reduce performance.

In contrast, with an Entity Component System (ECS), systems operate on

distinct components in isolation. For example, a system updating car

positions can run in parallel with another system handling car velocities,

without risking data races.

Rust's ownership model further enhances this by enforcing strict borrowing

rules, ensuring safe and efficient concurrent data access. This decoupling of

logic and data in ECS not only simplifies parallel execution but also leverages

multi-core processors more effectively, leading to smoother and faster

simulations.

Technical Comparison &
Highlights

Comparison between OOP and ECS paradigm.
Courtesy of https://devlog.hexops.com/2022/lets-build-ecs-part-1/

Get in touch

Intrepid AI | Page 5

3. Modularity and Extensibility

OOP: Adding new features in an OOP system often
requires changes to the class hierarchy, which can
introduce bugs and increase maintenance complexity.

ECS: New functionality can be added independently,
ensuring that existing code remains stable and
unmodified.

Component-Based Architecture: ECS’s
decoupling of data (components) and behavior
(systems) promotes high modularity. New
features can be added by simply defining new
components and systems, without altering
existing ones.

Technical Comparison

// Adding a new sensor component and system in ECS

struct Sensor {
 data: f32,
}

// System to process sensor data
fn sensor_system(mut query: Query<&mut Sensor>) {
 for mut sensor in query.iter_mut() {
 sensor.data = read_sensor_data(); // Hypothetical function
 }
}

// No need to modify existing position, velocity, or health systems

AI powered all-in-one
platform

for autonomous robotics

INTREPID AI

Ease of Maintenance: The separation of
concerns means that changes in one part of
the codebase (e.g., a specific system) do not
affect other parts, making the simulation
code easier to maintain and extend.

https://intrepid.ai/contact

USE CASE:
SIMULATING ROBOTICS SWARMS AT
MAXIMUM SPEED

background

In swarm robotics
simulations, where thousands
of robots must interact within
a dynamic environment,
performance and scalability
are a must.
The Entity Component
System (ECS) architecture
excels in these scenarios,
offering substantial
performance benefits over
traditional object-oriented
programming (OOP)
approaches. Let’s delve into
the details of a use case that
we have considered to
perform a direct comparison
between OOP and ECS
implementations.

Intrepid AI | Page 6

challenges

In robotics simulations, the
main challenges include
maintaining a consistent
frame rate, ensuring a
minimum level of accuracy in
the physics engine
computations, and achieving
high performance to fast-
forward simulations or run
multiple scenarios without
excessive waiting times.

Performance
Benchmarks and
Case Studies

To substantiate the technical
superiority of ECS in
simulations, we conducted
performance benchmarks
comparing ECS-based
implementations with
traditional OOP-based
implementations to simulate
hundreds of entities and
dynamic worlds.
The ECS implementation
always achieves a higher
level of parallelism, exploiting
almost all available CPU
cores, with respect to the
OOP equivalent
implementation.
Moreover the ECS
implementation could
perform at a stable frame rate
of 60 FPS, with efficient

memory usage and lower
CPU load.
In contrast the OOP
implementation struggled to
maintain 30 FPS, with
increased memory
fragmentation and higher
CPU usage. Such a result
was expected and explained
by the presence of cache
inefficiencies and complex
object inter-dependencies.

Dynamic Environment
Interaction
The ECS Implementation
could handle dynamic
changes in the virtual world
(e.g., adding/removing
entities, changing
components, etc.) smoothly,
with minimal impact on
performance.

https://intrepidai.substack.com/p/concept-to-reality-intrepid-ais-pioneering

Intrepid AI | Page 4

In contrast the OOP
implementation
encountered significant
slowdowns during dynamic
changes due to the
overhead of managing
object lifecycles and
dependencies.

offers substantial technical
advantages for robotics
simulations, particularly in
scenarios involving numerous
entities and complex
interactions.
Its data-oriented design
enhances cache efficiency, its
independent systems
facilitate parallelism, and its
modular structure promotes
ease of maintenance and
extensibility.

By leveraging ECS,
particularly with frameworks
like Bevy in Rust, the Intrepid
AI simulator can achieve
superior performance and
scalability, enabling more

Conclusion

Both the initial assumptions
based on the differences in
the computation paradigm
of ECS systems with
respect to traditional
paradigms and the
performance benchmarks
concluded that the Entity
Component System (ECS)

Intrepid AI | Page 7

Let’s take a look at some real-world examples of design&simulate
workflows in robotics

Defence & Military

The Intrepid AI platform has been used to
design and implement search and rescue
operations by deploying robotic fleets
equipped with advanced sensors to inspect
large areas quickly. When a person is
detected, the robots report the location and
coordinate with authorities for a swift rescue.
This efficient, data-driven approach improves
success rates and saves lives.

Critical environments

Rare Events/Scenarios

In construction, the Intrepid AI platform allows
operators to program autonomous drones to
inspect sites and identify safety hazards or
substandard work. The drones also inspect
older infrastructure for defects. By
automating these tasks, Intrepid AI ensures
higher safety and quality standards while
reducing inspection time and costs.

Infrastructure maintainance

realistic and responsive
simulations.

Don't let the future pass you
by.
Visit Intrepid AI today to take
the first step towards
unlocking the full potential of
simulation technology and
explore how our advanced
simulation capabilities can
transform your business or
research initiatives.

https://intrepid.ai/

INTREPID AI

